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Abstract. We estimate the couplings in the Heavy Hadron Chiral Theory (HHCT) lagrangian from the
QCD sum rules in an external axial field. We take into account the perturbative correction to the meson
correlator in the infinite mass limit. With the perturbative correction and three successive power correc-
tions, the meson correlator in an axial field becomes one of the best known correlators. In spite of this,
the corresponding sum rule is not very stable. It yields the result g1F

2/(380 MeV)3 = 0.1 ÷ 0.2, where
F 2 = f2

Mm/4 = (380 MeV)3 is the central value of the heavy meson decay constant with the perturbative
correction [14]. This result is surprisingly low as compared with the constituent quark model estimate
g1 = 0.75. The sum rules for g2,3 following from nondiagonal Σ −Σ and diagonal Λ−Σ baryon correlators
in an external axial field suggest g2,3 = 0.4 ÷ 0.7, while diagonal Σ − Σ and nondiagonal Λ − Σ baryon
sum rules have too large uncertainties.

1 Introduction

It is well known that the QCD lagrangian with nl mass-
less flavours has the SU(nl)L × SU(nl)R symmetry spon-
taneously broken to SU(nl)V giving the (n2

l − 1)–plet of
pseudoscalar massless Goldstone mesons (pions) πi

j (πi
i =

0). Their interactions at low momenta are described by
the chiral lagrangian (see e. g. [1])

Lπ =
f2

π

8
Tr ∂µΣ

+∂µΣ + · · · , Σ = exp
2iπ
fπ

, (1)

where the pion constant fπ ≈ 132 MeV is defined by

<0|ji
jµ|π> = ifπe

i
jpµ,

ji
jµ = qjγµγ5q

i → i
f2

π

2
(
Σ+∂µΣ −Σ∂µΣ

+)i
j

(ei
j is the pion flavour wave function), and dots mean terms

with more derivatives. Light quark masses can be included
perturbatively, and lead to extra terms in (1). SU(nl)L ×
SU(nl)R transformations act as Σ → LΣR+. Let’s define
ξ = exp iπ/fπ, Σ = ξ2; it transforms as ξ → LξU+ =
UξR+ where U is a SU(nl) matrix depending on π(x).
The vector vµ = 1

2 (ξ+∂µξ + ξ∂µξ
+) and the axial vector

aµ = i
2 (ξ+∂µξ−ξ∂µξ

+) transform as vµ → U(vµ+∂µ)U+,
aµ → UaµU

+. There is a freedom in transformation laws
of matter fields such as ψi because it is always possible
to multiply them by a matrix depending on π. The only
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requirement is the correct transformation with respect to
SU(nl)V (L = R). It is convenient to choose ψ → Uψ.
Then the covariant derivative Dµ = ∂µ + vµ transforms
as Dµψ → UDµψ. Covariant derivatives of tensors with
more flavour indices are defined similarly.

Hadrons with a heavy quark are now successively in-
vestigated in the framework of the Heavy Quark Effective
Theory (HQET) (see [2] for review and references). To
the leading order in 1/m, the heavy quark spin does not
interact and can be rotated or switched off at all (spin–
flavour and superflavour symmetry). The Qq mesons with
a spinless heavy quark form the jP = 1

2
+
nl–plet ψi. The

Qqq baryons can have jP = 0+ or 1+ giving the scalar
flavour–antisymmetric nl(nl − 1)/2–plet Λik and the vec-
tor flavour–symmetric nl(nl + 1)/2–plet Σ ik. Switching
the heavy quark spin on gives degenerate 0− and 1− B

and B∗ mesons, 1
2
+
Λ baryons, and degenerate 1

2
+ and

3
2
+
Σ and Σ∗ baryons.
Interaction of these ground–state heavy hadrons with

soft pions is described by the Heavy Hadron Chiral The-
ory [3,4] (see [5,6] for review and references). We start
from the HHCT lagrangian with the heavy quark spin
switched off [7]:

L = Lπ + ψiiD0ψ
i + Λ∗

ijiD0Λ
ij + Σ ∗

ij · (iD0 −∆)Σ ij

+g1ψi/a
i
jγ5ψ

j + 2ig2Σ ∗
ik · a i

j × Σ jk

+2g3
(
Λ∗

ika
i
j · Σ jk + Σ ∗

ik · a i
jΛ

jk
)
, (2)

where ∆ is the Σ–Λ mass difference. The possibility of
consideration of the ΣΛπ interaction in HHCT relies on
the fact that this difference is small compared to the chiral
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symmetry breaking scale though formally both of them
are of the order of the characteristic hadron mass scale.
The matrix elements of the axial current between heavy
hadrons are easily obtained using PCAC:

<M ′| i
j |M> = g1u

′
jγγ5u

i, (3)

<Σ′| i
j |Σ> = 2ig2e ′∗

jk × e ik, <Λ| i
j |Σ> = 2g3e∗

jke
ik,

where ui, eij , e ij are the M , Λ, Σ wave functions, and
the nonrelativistic normalization of the states and wave
functions is assumed. If we switch the heavy quark spin
on, we obtain the usual HHCT lagrangian [3].

The HHCT couplings gi should be in principle calcula-
ble in the underlying theory—HQET, but this is a difficult
nonperturbative problem. Some experimental information
is available on g1 and g3. If we neglect 1/mc corrections,
then Γ (D∗+ → D0π+) = g2

1p
3
π/(6πf

2
π), and similarly for

D+π0 (with the extra 1/2). The experimental upper limit
Γ (D∗+) < 0.131 MeV combined with the branching ratio
B(D∗+ → D0π+) = 68% [8] gives g1 < 0.68. A com-
bined analysis of D∗ pionic and radiative decays [4] gives
g1 ∼ 0.4–0.7. The recent CLEO measurement [9] of the
Σ∗

c → Λcπ decays gives [10] g3 = 0.7 ± 0.1. The decay
Σ∗

c → Σcπ is kinematically forbidden; therefore, the di-
rect measurement of g2 is not possible.

In the constituent quark model, g1 is the axial charge
g of the constituent light quark in the heavy meson. More-
over, following the folklore definition “constituent quark
is B meson minus b quark”, this is the most clear way to
define g of the constituent quark. The baryonic couplings
g2,3 are also equal to g in this model. The most naive es-
timate is g ≈ 1; the nucleon axial charge is gA = 5

3g in
the constituent model, and in order to obtain gA = 1.25
we should assume g = 0.75.

Sum rules [11] were successfully used to solve many
nonperturbative problems in QCD and HQET. The cur-
rents with the quantum numbers of the ground state
mesons and baryons with the heavy quark spin switched
off are

ji
M = Q∗ 1 + γ0

2
qi, jij

Λ1 = (qT [iCγ5q
j])Q,

 ij
Σ1 = (qT (iCγqj))Q, (4)

where Q is the spinless static quark field, C is the charge
conjugation matrix, qT means q transposed, (ij) and [ij]
mean symmetrization and antisymmetrization. There are
also currents jij

Λ2 and  ij
Σ2 with the additional γ0. Corre-

lator of the mesonic currents was investigated in [12–14],
and of the baryonic ones—in [15,16]. The sum rules results
are in a qualitative agreement with the constituent quark
model: the massless quark propagator plus the quark con-
densate contribution simulate the constituent quark prop-
agation well enough.

The sum rules method was generalized to the case of a
constant external field for calculation of such static char-
acteristics of hadrons as the magnetic moments [17]. Sum
rules in an external axial field were used [18] for calcula-
tion of gA of light baryons. In the present work we use
HQET sum rules in an axial field to estimate g1,2,3.

We introduce the external axial field Ai
jµ (Ai

iµ = 0) by
adding the term

∆L = jiµ
j Aj

iµ (5)

to the lagrangian. We are going to calculate correlators of
the currents (4) up to the terms linear in A (these terms
are denoted by the subscript A). The light quark prop-
agator in the gauge xµAµ(x) = 0 gets the contribution
(whose first term was found in [18])

Si
jA(x, 0) = − iAi

j · x
2π2

(
/xγ5

x4 − xµG̃µνγ
ν

4x2

)
+ · · · (6)

The G2 term in SA vanishes after the vacuum averaging;
we are not going to calculate gluonic contributions beyond
G2 and hence may omit this term. The axial field induces
the quark condensates

<qiaα(x)qjbβ(0)>A =
δa
b

4N

{[
f2/A i

j +
i

6
<qq>[/A i

j , /x]

+
m2

1f
2
π

36
(
5x2/A i

j − 2Ai
j · x/x)]γ5

}α

β
, (7)

<qiaαgG̃A
µνqjbβ>A = −

(
tA
)a
b

12CFN
m2

1f
2
π

(
Ai

jµγν −Ai
jνγµ

)α
β
,

where m2
1 ≈ 0.2 GeV2 [19,20] is defined by

<0|dgG̃µνγ
νu|π+> = im2

1fπpµ, N = 3 is the number of
colours, CF = (N2 − 1)/(2N) (the sum rule considered
in [20] yields the relation m2

1 ≈ m2
0/4). This formula has

been first obtained in [18], with the wrong sign ofm2
1 terms

(this sign was changed in [21], where a flavour–singlet ex-
ternal field was considered). We assume p · A = 0 where
p → 0 is the momentum of the field A; in general these
formulae should contain A⊥ = A− (A · p/p2)p.

The D∗Dπ coupling was estimated [22] from the sum
rules in an external axial field at a finite mc with the accu-
racy up to m2

1 term. This last term is incorrect; however,
it is rather small. The large mc limit was analyzed in [23,
7]. We think that the treatment of the phenomenological
side of the sum rule in [23] is not quite convincing (see
Sect. 2). In our previous work [7], we used an incorrect
formula for the induced condensates, which leads to the
wrong sign of the m2

1 term. After correcting this, the re-
sult agrees with [23–25]. In [24], the two–current product
sandwiched between the vacuum and a soft pion was con-
sidered; this is equivalent to the two–point sum rules in
an external axial field. Both finite and infinite mass case
are discussed in this work, with the extra power correc-
tionm2

0<qq> included (it is rather small). Light–cone sum
rules for both finite and infinite quark mass were consid-
ered in [25] (see also [26]). In this approach, the leading
term of the correlator and power corrections are deter-
mined by the leading– and subleading–twist pion wave
functions at x = 1/2. These values were determined from
QCD sum rules [29], and are not so accuratly known as the
parameters of the external–field sum rules, fπ and <qq>.
In the soft pion limit, the formulae of [24] are reproduced
(without the highest power correction). The D∗Dπ cou-
pling (at both finite and infinite quark mass) was also
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considered in the framework of 3–point QCD sum rules,
double Borel [27] and double moments [28]. It is difficult
to compare this approach with the one considered here,
because there correlators are determined by a completely
different set of contributions (with even dimensions).

Perturbative corrections to sum rules were not dis-
cussed in the above works. Here we present the next–to–
leading perturbative term in the infinite mass limit. With
this term taken into account, the correlator used in the g1
sum rule is one of the best known correlators: in addition
to the leading term, one perturbative correction and three
successive power corrections are known. In spite of this,
the sum rule is not very stable (Sect. 2). We also discuss
sum rules for the baryonic couplings g2,3 (Sect. 3), follow-
ing [7] with some corrections. The results for diagonal Λ–Σ
and nondiagonal Σ–Σ correlators suggest g2,3 = 0.4÷0.7.
The sum rules based on nondiagonal Λ–Σ and diagonal
Σ–Σ correlators have strong Borel parameter dependence
and therefore yield no definite predictions.

2 Mesons

The correlator of the meson currents (4) has the A–term

i<Tji(x)j(0)>A =
1 + γ0

2
/A i

jγ5
1 + γ0

2
δ(x)ΠA(x0) (8)

that depends only on A i
j and not Ai

j0. The correlator
possesses the usual dispersion representation at any Ai

jµ.
The meson contribution at Ai

jµ = 0 is ρ(ω) = F 2δ(ω − ε)
where ε is the meson energy and <0|ji|M> = iFui (the
usual meson constant is fM = 2F/

√
m). Switching on the

external field produces the energy shift ε → ε − g1γ5γ ·
A (sn = 1

2γ5γ · n = ± 1
2 is the meson spin projection).

Therefore the meson contribution is ρA(ω) = g1F
2δ′(ω −

ε) + cδ(ω − ε) where the second term originates from the
change of F 2. Besides that there is a smooth continuum
contribution ρcont

A (ω). Thus we obtain

ΠA(ω) =
g1F

2

(ω − ε)2
+

c

ω − ε
+Πcont

A (ω). (9)

In other words, the lowest meson’s contribution in both
channels (Fig. 1a) gives the double pole at ω = ε; mixed
lowest–higher state contributions (Fig. 1b) give a single
pole at ω = ε plus a term with a spectral density in the
continuum region after the partial fraction decomposition;
higher states’ contributions (Fig. 1c) have a spectral den-
sity in the continuum region only.

We can also calculate the correlator using OPE. Glu-
ons don’t interact with the heavy quark in the fixed point
gauge xµAµ(x) = 0. The leading perturbative diagram
(Fig. 2a) vanishes. In fact, all diagrams with non–cut light
quark line, including gluon condensate contributions
(Fig. 2b) and higher loop corrections (Fig. 2c), vanish.
The reason is that we can anticommute γ5 out, and ob-
tain a correlator of two currents (one of which contains γ5)
in a constant spatial vector field. By virtue of the Ward

Fig. 1. Physical states’ contributions to the correlator

Fig. 2. Correlator of meson currents

identity, it is equal to the derivative of the correlator with-
out external field with respect to the spatial momentum
flowing along the light quark line. This is minus deriva-
tive with respect to the spatial momentum flowing along
the heavy quark line. But the HQET propagator does not
depend on the spatial momentum, and hence the deriva-
tive vanishes. We have checked by a direct calculation,
using the technique of [30], that the two–loop correction
(Fig. 2c) vanishes in the case of naive anticommuting γ5
(which is the correct one to use in the weak current).

The diagram with cut line (Fig. 2c) gives

ΠA(t) =
f2

π

4

(
1 − i<qq>t

3f2
π

+
5
36
m2

1t
2

− im2
0<qq>t

3

48f2
π

)
. (10)

Thus the appearance of gA of the constituent quark is
entirely caused by interaction with the quark condensate.
The first three terms in (10) agree with [23–25]; the fourth
one is taken from [24]. The correlator (10) corresponds to
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the spectral density

ρA(ω) =
f2

π

4

(
δ(ω) − <qq>

3f2
π

δ′(ω) − 5
36
m2

1δ
′′(ω)

+
m2

0<qq>

48f2
π

δ′′′(ω)
)
. (11)

We have calculated the one–loop correction to the lead-
ing dimension contribution. Only the one–particle–irredu-
cible diagram (Fig. 2e) has to be calculated, all the other
contributions can be taken from [30]. The correlator of
bare currents in d = 4 − 2ε dimensions is

Π0
A(ω) =

if2

4ω

[
1 +

CF g
2
0(−2ω)−2ε

(4π)d/2

× (d− 2)(d− 7)
2(d− 3)

Γ (−ε)Γ (1 + 2ε)
]
. (12)

After renormalization of the heavy–light HQET currents,
it gives the finite result

ΠA(ω) =
if2

π

4ω

[
1 + CF

αs

4π

(
−6 log

−2ω
µ

+ 5
)]

,

ρA(ω) =
f2

π

4

[
δ(ω) − 6CF

αs

4π
1
ω

]
. (13)

In order to obtain the coordinate–space result at t = −iτ ,
one has to calculate the exact d–dimensional spectral den-
sity, take its Laplace transform, and go to the limit d → 4
only at the end:

ΠA(τ) =
f2

π

4

[
1 + CF

αs

4π

(
−6 log

2
µτ

+ 6γ + 5
)]

, (14)

where γ is the Euler constant. Using the technique of [30],
it is not difficult to calculate the two–loop correction to
(13). However, we decided not to derive the next–to–next–
to–leading term in the sum rule for g1F 2, because the
sum rule for F 2 is known only with the next–to–leading
accuracy [13,14].

As usual, we assume that the excited states’ contribu-
tion is dual to that of the theoretical spectral density (13)
above the effective continuum threshold εc. Equating the
phenomenological expression for the correlator to the the-
oretical one at an imaginary time t = −i/E we obtain the
sum rule(

g1F
2(µ)
E

+ c

)
e−ε/E

=
f2

π

4

[
1 + CF

αs

4π

(
−6 log

2εc

µ
+ 6 Ein

(εc

E

)
+ 5
)

(15)

− <qq>

3f2
πE

− 5
36
m2

1

E2 +
m2

0<qq>

48f2
πE

3

]
,

where

Ein(x) =

x∫
0

1 − e−t

t
dt

=
{

x
1·1! − x2

2·2! + x3

3·3! − · · · x � 1
log x+ γ +O(e−x/x), x � 1

(16)

1 1.5 2 2.5 3
0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

Fig. 3. g1F
2/(380 MeV)3 as a function of Borel parameter E:

dashed line – without the perturbative correction, solid lines
– with the perturbative correction (ε = 500 MeV [14], µ =
1 GeV, αs = 0.34, <qq> = −(240 MeV)3, continuum threshold
εc = 1 GeV, 1.25 GeV, 1.5 GeV)

The µ–dependence of the right–hand side of (15) coincides
with that of F 2(µ), with the accepted accuracy. The cor-
rection appears to be about 25 − 30% at µ = 1 GeV and
therfore is important.

We can multiply (15) by exp(ε/E) and differentiate
in E in order to exclude c. This procedure is equivalent
to finding a plato linear in the Borel parameter [17]. The
result is shown in Fig. 3. The value of F is a subject of
controversy in the current literature. We choose the middle
value of [14] F 2 = (380 MeV)3 as a reference point; the
sum rule produces g1F 2, therefore lower values of F 2 yield
larger values of g1. The OPE series (15) behaves as 1 +
270 MeV/E−(170 MeV/E)2−(240 MeV/E)3, so it seems
that the expansion is applicable at E > 500 MeV. This
is close to the lower bound of the applicability region of
the ordinary sum rule [12]. The continuum contribution is
small until very large values of E, because the continuum
only appears at the αs/π level (13). At large E the sum
rule (15) (without the perturbative correction) leads to

g1F
2 = 1

4f
2
πε− 1

12<qq>. (17)

At lower E, stability of this sum rule is not very good. Our
final numerical estimate is g1F 2/(380 MeV)3 = 0.1 ÷ 0.2.
The effect of the perturbative correction is moderate, and
dependence on the continuum threshold is very week.

The numerical results of the previous works differ from
each other largely due to different choices of the value
of F 2. Expressed in a common scale, they are remark-
ably similar: g1F 2/(380 MeV)3 = 0.16 ± 0.03 [23], 0.16 ±
0.04 [24], 0.17 ± 0.01 [25] (in the last result only divia-
tion with Borel parameter is indicated and 20% level of
accuracy is assumed), 0.14 ± 0.03 [26]. The perturbative
correction was not included in earlier works, and hence
they had the continuum spectral density equal to zero.
Ovchinnikov [23] included the first excited state in the
phenomenological side, assuming its energy known. How-
ever, he only included δ(ω−ε′) in ρA(ω), and not δ′(ω−ε′).
We see no justification for such an assumption. Taking
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Fig. 4. Correlator of baryon currents

c2δ
′(ω − ε′) into account would add one more unknown

parameter c2 to the problem.

3 Baryons

Correlators of the ΣΣ and ΛΣ currents have the A–terms

i<Tjij
Σl(x)j

∗
Σi′j′m(0)>A = iεlmnA

(i
n(i′δ

j)
j′)δ(x)ΠA(x0),

i<Tjij
Λ (x) ∗

Σi′j′(0)>A = A [i
(i′δ

j]
j′)δ(x)ΠA(x0). (18)

If we define <0|jij
Λ |Λ> = FΛe

ij
Λ , <0| ij

Σ |Σ> = FΣe ij
Σ ,

then the physical states’ contributions to the correlators
(Fig. 1) are

ΠA(ω) =
2g2F 2

Σ

(ω − εΣ)2
+

c

ω − εΣ
+ · · · (19)

ΠA(ω) =
2g3FΛFΣ

(ω − εΛ)(ω − εΣ)
+

cΛ
ω − εΛ

+
cΣ

ω − εΣ
+ · · ·

It is impossible to separate the g3 term from the mixed Λ–
excited and Σ–excited contributions unambiguously. We
can do it approximately if ∆ = εΣ − εΛ � εc − εΛ,Σ

because in such a case partial fraction decomposition of
the first term would give large contributions to cΛ,Σ ∼
1/∆ with the opposite signs while the natural scale of
cΛ,Σ in (19) is cΛ,Σ ∼ 1/(εc − εΛ,Σ). This is not a defect
of the sum rule but the uncertainty inherent to g3 which
can be defined only when∆ is small compared to the chiral
symmetry breaking scale. We choose to require cΛ = cΣ ;
the choices cΛ = 0 or cΣ = 0 would be equally good.

The baryonic correlators in the OPE framework are de-
scribed by the diagrams in Fig. 4. The diagrams Fig. 4a–c
with the non–cut quark line interacting with the axial field

vanish due to (6). We use the factorization approximation
for the four–quark condensate in Fig. 4e. In this approxi-
mation two diagonal correlators <j1j1> and <j2j2> coin-
cide in both ΣΣ and ΛΣ cases, as well as <jΛ1jΣ2> and
<jΛ2jΣ1>. This is similar to the usual heavy baryon sum
rules [15,16], and confirms the observation that FΛ1 = FΛ2
and FΣ1 = FΣ2 within the factorization approximation to
the sum rules. Only even–dimensional condensates con-
tribute to the diagonal ΣΣ and the nondiagonal ΛΣ cor-
relators:

ΠA(t) =
2N ! f2

π

Nπ2t3
(20)

×
[
1 +

(
5
3

± CB

CF

)
m2

1t
2

12
+
π2<qq>2t4

6Nf2
π

]
,

where CB/CF = 1/(N − 1) (this term comes from the
diagram Fig. 4f). Only odd–dimensional condensates con-
tribute to the nondiagonal ΣΣ and the diagonal ΛΣ cor-
relators:

ΠA(t) =
2N !<qq>
3Nπ2t2

(21)

×
[
1 − 3π2f2

πt
2

2N
(
1 + 1

16m
2
0t

2 + 5
36m

2
1t

2)] .(22)

These correlators correspond to the spectral densities

ρA(ω) =
N ! f2

π

Nπ2

[
ω2 −

(
5
3

± CB

CF

)
m2

1

6

]
,

ρA(ω) = −2N !<qq>ω
3Nπ2 (23)

(plus δ(ω) and its derivatives).
We use the standard continuum model ρcont

A (ω) = ρtheor
A

ϑ(ω−εc). Equating the OPE (20, 21) and the spectral rep-
resentation at t = −i/E, we obtain the sum rules

(
2g2F 2

Σ

E
+ c

)
e−εΣ/E

=
4f2

π

π2 E
3
[
f2 (εc/E) − 13m2

1

72E2 f0 (εc/E)

+
π2<qq>2

18f2
πE

4

]
(24)

= −4<qq>
π2 E2

[
f1 (εc/E) +

π2f2
π

2E2

(
1 − m2

0

16E2

− 5m2
1

36E2

)]
,

(
2g3FΛFΣ

∆
tanh

∆

2E
+
c

2

)(
e−εΛ/E + e−εΣ/E

)

=
4f2

π

π2 E
3
[
f2 (εc/E) − 7m2

1

72E2 f0 (εc/E)

+
π2<qq>2

18f2
πE

4

]
(25)
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Fig. 5. Sum rules for g2,3 (solid and dashed lines): a – diagonal
ΣΣ and nondiagonal ΛΣ sum rules; b – nondiagonal ΣΣ and
diagonal ΛΣ sum rules

= −4<qq>
π2 E2

[
f1 (εc/E) +

π2f2
π

2E2

(
1 − m2

0

16E2

− 5m2
1

36E2

)]
,

where fn(x) = 1 − e−x
∑n

m=0 x
m/m!.

Now we can start the numerical analysis. We adopt
the energies and residues of Λ and Σ obtained from the
HQET sum rules [15,16]:

εΛ = 0.8 GeV, FΛ = 0.03 GeV3,

εΣ = 1.0 GeV, FΣ = 0.04 GeV3.

We assume that the effective continuum threshold for the
A–terms of the Σ–Σ correlators is the same as without the
external field: εc = (1.3±0.1) GeV; for the Λ–Σ correlators
we use εc = (1.1 ± 0.1) GeV.

Figure 5a shows the results for g2F 2
Σ/(1.6 ·10−3 GeV6)

and g3FΛFΣ/(1.2 · 10−3 GeV6) obtained from the diago-
nal Σ–Σ and the nondiagonal Λ–Σ correlators (the first
formulae in (24) and (25)). The spectral density (23) be-
haves like ω2, and hence the continuum contribution to
the sum rules (25) quickly grows: it is equal to the result
at E ≈ 600 MeV and is three times larger than the result
at E ≈ 900 MeV. If we assume that the uncertainty in
the continuum contribution is, e. g., 30%, then we can’t
trust the sum rules at E > 900 MeV. The lower bound
of the applicability region is determined by the conver-
gence of the OPE series for the correlators. It behaves like

1 − (190 MeV/E)2 + (245 MeV/E)4 for the Σ–Σ correla-
tor; in the Λ–Σ case 140 MeV enters instead of 190 MeV.
It seems that OPE should be applicable at E > 400 MeV.
The sum rules in this window are unstable and therefore
yield no definite predictions.

Figure 5b shows the results for g2F 2
Σ/(1.6 ·10−3 GeV6)

and g3FΛFΣ/(1.2 · 10−3 GeV6) obtained from the nondi-
agonal Σ–Σ and the diagonal Λ–Σ correlators (the second
formulae in (24) and (25)). The spectral density (23) be-
haves like ω, and the continuum contribution grows not so
quickly: it is equal to the result at E ≈ 1 GeV and is three
times larger than the result at E ≈ 1.6 GeV. The OPE se-
ries behaves like 1 + (290 MeV/E)2

[
1 − (150 MeV/E)2

]
,

and the applicability region starts at a larger E. Stabil-
ity of these sum rules is quite good. The sum rules give
g2,3 = 0.4 ÷ 0.7.

In conclusion, the meson sum rule in an external ax-
ial field, with the perturbative correction and three succes-
sive power corrections, gives the value g1F 2/(380 MeV)3 =
0.1 ÷ 0.2, which is much lower than the constituent quark
model expectation g1 = 0.75 unless a substantially lower
value of F 2 is used. The sum rules for g2,3 following from
nondiagonal Σ–Σ and diagonal Λ–Σ baryon correlators
in an external axial field suggest g2,3 = 0.4÷0.7, while di-
agonal Σ–Σ and nondiagonal Λ–Σ baryon sum rules have
too large uncertainties.
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